草榴社区

师资队伍

李春宏

职称:特聘研究员

最高学历毕业院校及专业:西南大学 分析化学

所属学科:药物分析

电子邮件:[email protected]

个人简历

研究方向

代表性论著

教学科研项目及获奖

职称 特聘研究员 最高学历毕业院校及专业 西南大学 分析化学
所属学科 药物分析 电子邮箱 [email protected]
研究方向 1. 基于框架核酸的肿瘤标志物的检测及分析;<br>
2. 药物的靶向递送及肿瘤准确治疗;<br>
3. DNA合成及DNA数据存储(BT-IT融合)。<br>
发表论文 [1] Li C. H.; Xie J. L.; Men C.; Liu L.; Huang C. Z.; Li C. M.; Zhen S. J. Precise delivery of ricin a-chain and photosensitizer by aptamer-functionalized liposome for targeted chemo-photodynamic synergistic therapy. ACS Materials Letters 2024, 6, 2050-2058.<br>
[2] Li C. H.; Lv W. Y.; Yang F. F.; Li C. M.; Huang C. Z.; Zhen S. J. Logic control of directional long-range resonance energy transfer on 2D DNA nanosheet. Small 2023, 19, 2301811.<br>
[3] Li C. H.; Lv W. Y.; Yang F. F.; Zhen S. J.; Huang C. Z. Simultaneous imaging of dual microRNAs in cancer cells through catalytic hairpin assembly on a DNA tetrahedron. ACS Appl. Mater. Interfaces 2022, 14, 12059–12067.<br>
[4] Li C. H.; Lv W. Y.; Yan Y.; Yang F. F.; Zhen S. J.; Huang C. Z. Nucleolin-targeted DNA nanotube for precise cancer therapy through förster resonance energy transfer-indicated telomerase responsiveness. Anal. Chem. 2021, 93, 3526–3534.<br>
[5] Li C. H.; Li R. S.; Li C. M.; Huang C. Z.; Zhen S. J. Precise ricin a-chain delivery by golgi-targeting carbon dots. Chem. Commun. 2019, 55, 6437-6440.<br>
[6] Li C. H.; Xiao X.; Tao J.; Wang D. M.; Huang C. Z.; Zhen S. J. A graphene oxide-based strand displacement amplification platform for ricin detection using aptamer as recognition element. Biosens. Bioelectron. 2017, 91, 149-154.<br>
[7] Lv W. Y.; Li C. H.; Yang F. F.; Li Y. F.; Zhen S. J.; Huang C. Z. Sensitive logic nanodevices with strong response for weak inputs. Angew. Chem. Int. Ed. 2022, 61, e202115561.<br>
[8] Yang F. F.; Li C. H.; Lv W. Y.; Zhen S. J.; Huang C. Z. Deoxyribonucleic acid photonic wires with three primary color emissions for information encryption. Adv. Funct. Mater. 2021, 31, 2100322.<br>
[9] Lv W. Y.; Li C. H.; Li Y. F.; Zhen S. J.; Huang C. Z. Hierarchical hybridization chain reaction for amplified signal output and cascade DNA logic circuits. Anal. Chem. 2021, 93, 3411-3417.<br>
[10] Men C.; Li C. H.; Wei X. M.; Liu J. J.; Liu Y. X.; Huang C. Z.; Zhen S. J. A sensitive and low background fluorescent sensing strategy based on g-c3n4–MnO2 sandwich nanocomposite and liposome amplification for ricin detection. Analyst 2018, 143, 5764-5770.<br>
[11] Tian L. L.; Li C. H.; Ye Q. C.; Li Y. F.; Huang C. Z.; Zhan L., Zhen S. J. A centrifugal microfluidic chip for point-of-care testing of staphylococcal enterotoxin B in complex matrices. Nanoscale 2022, 14, 1380-1385.<br>
[12] Zhen S. J.; Xiao X.; Li C. H.; Huang C. Z. An enzyme-free DNA circuit-assisted graphene oxide enhanced fluorescence anisotropy assay for microrna detection with improved sensitivity and selectivity. Anal. Chem. 2017, 89, 8766-8771.<br>
[13] Wang Y.; He W.; Li C. H.; Xia C.; Yan Y.; Li C. M.; Huang C. Z. Chirality transfer of cysteine to the plasmonic resonance region through silver coating of gold nanobipyramids. Chem. Commun. 2021, 57, 3211-3214.<br>
[14] Liu Y. X.; Xie T. J.; Li C. H.; Ye Q. C.; Tian L. L.; Li Y. F., Zhen S. J. A crosslinked submicro-hydrogel formed by DNA circuit-driven protein aggregation amplified fluorescence anisotropy for biomolecules detection. Anal. Chim. Acta 2021, 1154, 338319.<br>
[15] Liu Y. X.; Xiao X.; Li C. H.; Men C.; Ye Q. C.; Lv W. Y., Zhen S. J. DNA nanosheet as an excellent fluorescence anisotropy amplification platform for accurate and sensitive biosensing. Talanta 2020, 211, 120730.<br>
[16] Tao J.; Xiao X.; Li C. H.; Men C.; Zhen S. J. A new graphene oxide enhanced fluorescence anisotropy strategy for microrna detection. Sci. Sin. Chim. 2017, 48, 85-92.<br>
[17] Chai S. Q.; Lv W. Y.; He J. H.; Li C. H.; Li Y. F.; Li C. M.; Huang C. Z. Dual energy transfer-based fluorescent nanoprobe for imaging mir-21 in nonalcoholic fatty liver cells with low background. Anal. Chem. 2019, 91, 6761-6768.<br>
[18] Kong B.; Yang T.; Hou P.; Li C. H.; Zou H. Y.; Huang C. Z. Enzyme-triggered fluorescence turn-off/turn-on of carbon dots for monitoring β-glucosidase and its inhibitor in living cells. Luminescence 2019, 35, 222-230.<br>
[19] Wang, R. B.; Liu, Y. H.; Zhang, Y. L.; Yi, Q. X.; Xiao, W. J.; Wang, T. Q.; Chen, Q. Y.; Xiang, J. Y.; Song, L.; Li, C. H.; Li, F.; Liu, L.; Li, Q.; Fan, C. H.; Mao, X. H.; Zuo, X. L. DNA Framework-Enabled Ocular Barrier Penetration for Microinvasive Antiangiogenic Therapy J. Am. Chem. Soc. 2025, 147, 9, 7545–7554<br>
[20] Xia, C.; Gao, P. F.; He, W.; Wang, Y.; Li, C. H.; Zou, H. Y.; Li, Y. F.; Huang, C. Z. Long-distance transfer of plasmonic hot electrons across the Au–Pt porous interface for the hydrogen evolution reaction J. Mater. Chem. C 2021, 9, 3108-3114.<br>
教学科研成果 项目:<br>
1. 主持上海市2023年度“科技创新行动计划”启明星项目(扬帆专项)(NO. 22YF1460200)<br>
2. 主持2022年上海市“超级博士后”激励计划资助 (NO. 2022602)<br>
专利:<br>
1. 一种蛋白与核酸连接的方法;樊春海,李春宏,左小磊,王丽华,贾思思;申请号:202211068677.X<br>
2. 基于框架核酸的高通量酶促DNA合成方法;左小磊,樊春海,李春宏;申请号:202410531782.5<br>
3. DNA框架结构上可寻址的酶连接方法;左小磊,樊春海,李春宏;申请号:202410531839.1<br>

李春宏,博士研究生,特聘研究员。

学术经历:

硕士和博士就读于西南大学,导师分别为甄淑君教授和黄承志教授,主要进行生物传感与生化分析、药物的靶向递送及肿瘤治疗相关领域的研究,分别获得药物分析和分析化学专业的硕士和博士学位。随后,进入上海交通大学/张江实验室做博士后,合作导师为樊春海院士、王丽华研究员,同时跟随左小磊研究员从事新型酶促DNA合成及DNA数据存储等相关领域的应用研究。

工作经历:

20251-至今,草榴社区

20219-202411月,上海交通大学/张江实验室 博士后

获奖或荣誉称号

西南大学2021年优秀博士毕业论文

西南大学2017年科技学术创新先进个人

1. 基于框架核酸的肿瘤标志物的检测及分析;
2. 药物的靶向递送及肿瘤准确治疗;
3. DNA合成及DNA数据存储(BT-IT融合)。

[1] Li C. H.; Xie J. L.; Men C.; Liu L.; Huang C. Z.; Li C. M.; Zhen S. J. Precise delivery of ricin a-chain and photosensitizer by aptamer-functionalized liposome for targeted chemo-photodynamic synergistic therapy. ACS Materials Letters 2024, 6, 2050-2058.
[2] Li C. H.; Lv W. Y.; Yang F. F.; Li C. M.; Huang C. Z.; Zhen S. J. Logic control of directional long-range resonance energy transfer on 2D DNA nanosheet. Small 2023, 19, 2301811.
[3] Li C. H.; Lv W. Y.; Yang F. F.; Zhen S. J.; Huang C. Z. Simultaneous imaging of dual microRNAs in cancer cells through catalytic hairpin assembly on a DNA tetrahedron. ACS Appl. Mater. Interfaces 2022, 14, 12059–12067.
[4] Li C. H.; Lv W. Y.; Yan Y.; Yang F. F.; Zhen S. J.; Huang C. Z. Nucleolin-targeted DNA nanotube for precise cancer therapy through förster resonance energy transfer-indicated telomerase responsiveness. Anal. Chem. 2021, 93, 3526–3534.
[5] Li C. H.; Li R. S.; Li C. M.; Huang C. Z.; Zhen S. J. Precise ricin a-chain delivery by golgi-targeting carbon dots. Chem. Commun. 2019, 55, 6437-6440.
[6] Li C. H.; Xiao X.; Tao J.; Wang D. M.; Huang C. Z.; Zhen S. J. A graphene oxide-based strand displacement amplification platform for ricin detection using aptamer as recognition element. Biosens. Bioelectron. 2017, 91, 149-154.
[7] Lv W. Y.; Li C. H.; Yang F. F.; Li Y. F.; Zhen S. J.; Huang C. Z. Sensitive logic nanodevices with strong response for weak inputs. Angew. Chem. Int. Ed. 2022, 61, e202115561.
[8] Yang F. F.; Li C. H.; Lv W. Y.; Zhen S. J.; Huang C. Z. Deoxyribonucleic acid photonic wires with three primary color emissions for information encryption. Adv. Funct. Mater. 2021, 31, 2100322.
[9] Lv W. Y.; Li C. H.; Li Y. F.; Zhen S. J.; Huang C. Z. Hierarchical hybridization chain reaction for amplified signal output and cascade DNA logic circuits. Anal. Chem. 2021, 93, 3411-3417.
[10] Men C.; Li C. H.; Wei X. M.; Liu J. J.; Liu Y. X.; Huang C. Z.; Zhen S. J. A sensitive and low background fluorescent sensing strategy based on g-c3n4–MnO2 sandwich nanocomposite and liposome amplification for ricin detection. Analyst 2018, 143, 5764-5770.
[11] Tian L. L.; Li C. H.; Ye Q. C.; Li Y. F.; Huang C. Z.; Zhan L., Zhen S. J. A centrifugal microfluidic chip for point-of-care testing of staphylococcal enterotoxin B in complex matrices. Nanoscale 2022, 14, 1380-1385.
[12] Zhen S. J.; Xiao X.; Li C. H.; Huang C. Z. An enzyme-free DNA circuit-assisted graphene oxide enhanced fluorescence anisotropy assay for microrna detection with improved sensitivity and selectivity. Anal. Chem. 2017, 89, 8766-8771.
[13] Wang Y.; He W.; Li C. H.; Xia C.; Yan Y.; Li C. M.; Huang C. Z. Chirality transfer of cysteine to the plasmonic resonance region through silver coating of gold nanobipyramids. Chem. Commun. 2021, 57, 3211-3214.
[14] Liu Y. X.; Xie T. J.; Li C. H.; Ye Q. C.; Tian L. L.; Li Y. F., Zhen S. J. A crosslinked submicro-hydrogel formed by DNA circuit-driven protein aggregation amplified fluorescence anisotropy for biomolecules detection. Anal. Chim. Acta 2021, 1154, 338319.
[15] Liu Y. X.; Xiao X.; Li C. H.; Men C.; Ye Q. C.; Lv W. Y., Zhen S. J. DNA nanosheet as an excellent fluorescence anisotropy amplification platform for accurate and sensitive biosensing. Talanta 2020, 211, 120730.
[16] Tao J.; Xiao X.; Li C. H.; Men C.; Zhen S. J. A new graphene oxide enhanced fluorescence anisotropy strategy for microrna detection. Sci. Sin. Chim. 2017, 48, 85-92.
[17] Chai S. Q.; Lv W. Y.; He J. H.; Li C. H.; Li Y. F.; Li C. M.; Huang C. Z. Dual energy transfer-based fluorescent nanoprobe for imaging mir-21 in nonalcoholic fatty liver cells with low background. Anal. Chem. 2019, 91, 6761-6768.
[18] Kong B.; Yang T.; Hou P.; Li C. H.; Zou H. Y.; Huang C. Z. Enzyme-triggered fluorescence turn-off/turn-on of carbon dots for monitoring β-glucosidase and its inhibitor in living cells. Luminescence 2019, 35, 222-230.
[19] Wang, R. B.; Liu, Y. H.; Zhang, Y. L.; Yi, Q. X.; Xiao, W. J.; Wang, T. Q.; Chen, Q. Y.; Xiang, J. Y.; Song, L.; Li, C. H.; Li, F.; Liu, L.; Li, Q.; Fan, C. H.; Mao, X. H.; Zuo, X. L. DNA Framework-Enabled Ocular Barrier Penetration for Microinvasive Antiangiogenic Therapy J. Am. Chem. Soc. 2025, 147, 9, 7545–7554
[20] Xia, C.; Gao, P. F.; He, W.; Wang, Y.; Li, C. H.; Zou, H. Y.; Li, Y. F.; Huang, C. Z. Long-distance transfer of plasmonic hot electrons across the Au–Pt porous interface for the hydrogen evolution reaction J. Mater. Chem. C 2021, 9, 3108-3114.

项目:
1. 主持上海市2023年度“科技创新行动计划”启明星项目(扬帆专项)(NO. 22YF1460200)
2. 主持2022年上海市“超级博士后”激励计划资助 (NO. 2022602)
专利:
1. 一种蛋白与核酸连接的方法;樊春海,李春宏,左小磊,王丽华,贾思思;申请号:202211068677.X
2. 基于框架核酸的高通量酶促DNA合成方法;左小磊,樊春海,李春宏;申请号:202410531782.5
3. DNA框架结构上可寻址的酶连接方法;左小磊,樊春海,李春宏;申请号:202410531839.1